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The statistics of unsteady turbulence with uniform stratification N (Brunt–Väisälä
frequency) and shear α(= dU1/dx3) are analysed over the entire time range
(0 < αt < ∞) using rapid distortion theory (RDT) over a wide range of Richardson
number Ri(= N2/α2), and initial conditions. The solutions are found to be described
by the Legendre functions of complex degree with pure-imaginary argument and
are compared with previously published results of both direct numerical simulations
(DNS) and experiments. In the initial stage of development many of the characteristics
are similar to those in stratified flow with no shear, since the turbulence is determined
by Nt at the leading order, and the effects of vertical shear α generally appear at higher
order. It is shown how in developing turbulence for Ri > 0 and Ri > 0.25 respectively,
oscillatory momentum and positive and negative density fluxes develop. Above a
critical value of Ricrit(∼ 0.3), their average values are persistently countergradient.
This structural change in the turbulence is the primary mechanism whereby stable
stratification reduces the fluxes and the production of variances. It is quite universal
and differs from the energy and stability mechanisms of Richardson (1926) and
Taylor (1931). The long-time asymptotics of the energy ratio ER(= PE/VKE) of the
potential energy to the vertical kinetic energy generally decreases with Ri(� 0.25),
reaching the smallest value of 3/2 when there is no shear (Ri → ∞). For strong mean
shear (Ri < 0.25), RDT significantly overestimates ER since (as in unstratified shear
flow) it underestimates the vertical kinetic energy VKE. The RDT results show that
the asymptotic values of the energy ratio ER and the normalized vertical density flux
are independent of the initial value of ER, in agreement with DNS. This independence
of the initial condition occurs because the ratios of the contributions from the initial
values PE0 and KE0 are the same for PE and VKE and can be explained by the
linear processes. Stable stratification generates buoyancy oscillations in the direction
of the energy propagation of the internal gravity wave and suppresses the generation
of turbulence by mean shear. Because the shear distorts the wavenumber fluctuations,
the low-wavenumber spectrum of the vertical kinetic energy has the general form
E33(k) ∝ (αtk)−1, where (LXαt)−1 � k � L−1

X (LX: integral scale). The viscous decay is
controlled by the shear, so that the components of larger streamwise wavenumber
k1 decay faster. Then, combined with the spectrum distortion by the shear, the
energy and the flux are increasingly dominated by the small-k1 components as time
elapses. They oscillate at the buoyancy period π/N because even in a shear flow the
components as k1 → 0 are weakly affected by the shear. The effects of stratification
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N and shear α at small scales are to reduce both VKE and PE. Even for the same
Ri, larger N and α reduce the high-wavenumber components of VKE and PE. This
supports the applicability of the linear assumption for large N and α. At large scales,
the stratification and shear effects oppose each other, i.e. both VKE and PE decrease
due to the stratification but they increase due to the shear. We conclude that certain
of these unsteady results can be applied directly to estimate the properties of sheared
turbulence in a statistically steady state, but others can only be applied qualitatively.

1. Introduction
Turbulence is not a universal state of nature, but there are similar forms of eddy

motion, and mixing processes with similar statistical properties for a variety of
turbulent flows within a particular ‘type’. These ‘types’ are determined by the form
of the large-scale motion or forcing or initial/boundary conditions (e.g. shear flows,
buoyant convection etc.) Studying both the qualitative features and the statistics is
necessary to predict and understand the effects of turbulence on other processes such
as heat and mass transfer (Holmes, Lumley & Berkooz 1996; Hunt et al. 2001).

Stably stratified turbulent flows with weak mean shear are members of one
important ‘type’, and research in the past 50 years has demonstrated how similar
characteristic features of the eddy motion, and characteristic values of the dimension-
less groups and other statistical relations are found in stably stratified shear flows
whether in the atmosphere, ocean or engineering (e.g. Hunt, Kaimal & Gaynor 1985;
Gargett 1986; Schumann 1996).

The aim of this paper is to build on previous laboratory, theoretical and numerical
studies (e.g. water tank experiments by Komori et al. 1983 and Rohr et al. 1988,
wind-tunnel experiments by Piccirillo & Van Atta 1997, direct numerical simulations
(DNS) by Gerz, Schumann & Elghobashi 1989, Holt, Koseff & Ferziger 1992 and
Jacobitz, Sarkar & Van Atta 1997, and large eddy simulation (LES) by Kaltenbach,
Gerz & Schumann 1994) and explain how a number of these properties change as
the mean shear varies, while the flow remains stably stratified. Although we focus
on homogeneous flows with uniform gradients, such idealized flows describe many,
but not all, features of stably stratified turbulence that occur in complex flows. There
are certainly important exceptions such as where the turbulence is driven by wave
motion generated some distance away. An intrinsic feature of spatially homogeneous
turbulence is that it is unsteady, even in the presence of mean shear. This is because
the turbulence structure keeps changing so that the production of turbulent energy is
not equal to its loss by dissipation and conversion to potential energy. Consequently
(cf. Townsend 1976) one has to be cautious about the direct application of results
from these idealized flows to steady inhomogeneous flows.

There are three major unsolved problems on turbulence in stratified shear flows.
(1) The first of the problems to be addressed is to quantify the mechanisms for

the suppression of turbulence in shear flows (dU1/dx3 = α) by stable stratification,
with buoyancy frequency N = [(−g/ρ0)dρ/dx3]

1/2. The fact that the mean velocity
profile is exponentially unstable/stable to small disturbances when the Richardson
number Ri(= N2/α2) is less/greater than a critical value Ricri (typically 0.25), has been
proposed as the main suppression mechanism in such flows (Taylor 1931; Miles 1961).
There are two objections to this explanation. First, experiments show that turbulence
persists, even if intermittently, above this value. Secondly, this stability argument does
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not apply to homogeneous shear flows where small disturbances grow algebraically,
and not exponentially.

For both these types of flows Richardson’s (1926) energy arguments can be applied,
namely that as Ri increases the vertical velocity fluctuations are damped. This is only a
partial explanation for the suppression mechanism because it implies that there should
be a gradual decay of turbulence as Ri increases above 1.0, inconsistent with the
observation of quite a sudden suppression as Ri increased above 0.25. Similarly most
statistical turbulence models predict the sudden suppression of turbulence because
they are based on approximate relations between turbulent energy and Reynolds
stresses (e.g. Craft, Ince & Launder 1996).

Previous studies have shown that the shear stress −u1u3 and thence the production
of turbulence by shear (−u1u3dU/dx3) is in fact reduced by changes in the phase
between vertical and horizontal velocity fluctuations as the particles’ vertical motion
tends to become more oscillatory in stable stratification (e.g. see Galmiche & Hunt
2002). To summarize, there remain uncertainties about the mechanisms in the different
stages of the suppression process as Ri increases.

(2) The second problem concerns the large-scale vertical displacements Z of fluid
particles that tend to be oscillatory on a time scale of order N−1 and are limited to a

length scale lB of order σw/N , where σw = u2
3

1/2
is the r.m.s. vertical velocity (a result of

Lagrangian modelling by Csanady 1964, Pearson, Puttock & Hunt 1983, Kimura &
Herring 1996, Kaneda 2000, Kaneda & Ishida 2000). Experiments at very high
Reynolds numbers (Re ∼ σwLX/ν =103, where LX is the integral scale (Britter et al.
1983) show that, as a result of fluid elements mixing with their surroundings, the
variance of Z (Z2), after levelling out at time N−1, increases very slowly on a time
scale γ −2N−1, where γ � 1. Kimura & Herring’s (1996) low Reynolds number DNS of
rapidly decaying stratified turbulence show that γ = 0. The Lagrangian models show
γ = 0 or γ �= 0 depending on their parameterization of mixing. From Taylor (1921) it
follows that the forms of the Lagrangian autocorrelation function and spectra must
also be sensitive to the value of γ (Fernando & Hunt 1996). No quantitative model
shows how at high Reynolds numbers γ tends to increase in the presence of shear.

These limited vertical displacements determine the level of r.m.s. fluctuation of
density ρ and also of any passive scalar (such as pollutant concentration). Normalized
on the mean density gradient, the magnitude of σρ = (ρ2)1/2 can be interpreted
physically in terms of a ‘density’ or Ellison length scale lρ = σρ/|dρ/dx3|. Experiments
in sheared and unsheared stratified flows (e.g. Hunt et al. 1985; Monti et al. 2002)
show that lρ is of the same order as lB , i.e.

lρ/ lB = ξρ ∼ 1,

when the stratification is strong, Fr = σw/NLX � 1, where Fr is the Froude number.
(3) Since the mass flux is caused by particles being displaced (i.e. macro mixing)

and then exchanging matter with other particles (micro mixing), the reduction in the
vertical displacement (Z) affects the mean density flux (−ρu3) and the eddy diffusivity
κρ = −ρu3/(dρ/dx3).

When normalized by lB and σw , κρ and the flux are determined by the dimensionless
ratio F, where F = κρ/(σwlB). In stable flows without shear F is found to be very
small (∼ 0.1), but in sheared flows the mixing is large (Hunt et al. 1985), as also
occurs in unstratified flows (e.g. Sawford & Hunt 1986).

In unsteady developing stably stratified flows, the oscillation of the particle
displacements causes F to be negative for an increasing proportion of the time, i.e.
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there is a countergradient mass flux (e.g. Piccirillo & Van Atta 1997; Hunt, Stretch &
Britter 1988). But as with the countergradient Reynolds stress, it is necessary to
examine systematically how shear affects this change.

When there is no shear, the results of RDT (Hanazaki & Hunt 1996) have shown
how the initial conditions determine the subsequent time development of the partition
of energy between the potential energy and the kinetic energy. In addition, the
change of sign in the vertical density flux with time, which leads to the so-called
countergradient flux, could be explained by the simple linear oscillations due to
buoyancy effects rather than by a new kind of nonlinear mixing processes. The
changes in the spectra and cospectra derived by DNS and moderate Reynolds number
laboratory experiments for unsteady developing flows could also be estimated by
linear theory. However, for very high Reynolds number stably stratified flows, where
buoyancy forces do not affect the smallest scales in the spectrum, the use of RDT
requires a heuristic assumption about the time scale for each wavenumber range over
which the linear processes are effective (Derbyshire & Hunt 1993).

In this study we extend the method to flow with mean shear. There are two
time scales N−1 and α−1, two internal length scales u′

3/N and u′
3/α (u′

3 is the r.m.s.
value of the vertical velocity) and an imposed length scale LX . By assuming that
Fr = u′

3/(NLX) � 1 and αLX/u′
3 � 1, the linear effects of stratification and mean

shear dominate the dynamics of the energy-containing eddies for high Reynolds
number turbulence and for the whole spectrum for low/moderate Reynolds number
turbulence. Before starting this calculation we note (following Townsend 1976 and
Kevlahan & Hunt 1997) that if certain velocity components are suppressed relative
to others, nonlinear processes can feed energy to these components. So for these
components the linear theory underestimates the results.

For the first time, the RDT equations for stably stratified shear flows have
been solved analytically for arbitrary time. The results are consistent with the time
development of the spectra and the fluxes which have been obtained by the short-time
analytical approximations (some of which have been obtained previously). Numerical
integrations of the solutions are used to derive the variances and spectra for moderate
to long time developments over a wide range of Ri.

2. RDT equations
We consider a homogeneous turbulent flow stratified (dρ/dx3) and sheared

(α = dU1/dx3) in the vertical (x3) direction. The governing equations of rapid distortion
theory (RDT) (Batchelor & Proudman 1954; Townsend 1976; Stretch 1986; Hunt et al.
1988) which describe the turbulence in the frame of reference moving with the mean
shear flow are (

d

dt
+ νk2

)
ûi = αû3

(
2kik1

k2
− δi1

)
+

(
kik3

k2
− δi3

)
ρ̂, (2.1)

(
d

dt
+ κk2

)
ρ̂ = N2û3, (2.2)

where N is the Brunt–Väisälä frequency given by N2 = −(g/ρ0)(dρ/dx3), and
ûi(i =1, 2, 3) and ρ̂ are defined by

ui =
∑
k(t)

ûi(k(t), t)eik(t) · x, (2.3)
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and
g

ρ0

ρ =
∑
k(t)

ρ̂(k(t), t)eik(t) · x . (2.4)

Here, ρ0 is the reference density, ρ is the perturbation density, g is the acceleration
due to gravity, ν is the viscosity coefficient and κ is the diffusion coefficient.

The wavenumber vector develops with time as

dki

dt
= −αk1δi3, (2.5)

which gives

k(t) = (k1, k2, k3) = (k10, k20, k30 − αtk10), (2.6)

where k0 = (k10, k20, k30) is the initial wavenumber.
In this study we use a spherical coordinate in the spectral space defined by

k1 = k sin θ cos φ, k2 = k sin θ sin φ, k3 = k cos θ, (2.7)

where k = (k2
1 + k2

2 + k2
3)

1/2, 0 � θ � π, and 0 � φ � 2π. Then, the initial wavenumber
vector satisfies

k10 = k0 sin θ0 cos φ0, k20 = k0 sin θ0 sin φ0, k30 = k0 cos θ0, (2.8)

with k0 = (k2
10 + k2

20 + k2
30)

1/2, and the distorted wavenumber at time t becomes

k1(t) = k(t) sin θ (t) cos φ0, k2(t) = k(t) sin θ(t) sin φ0, k3(t) = k(t) cos θ (t). (2.9)

Since only the k3 component changes with time, θ changes with time, while φ(= φ0)
and the horizontal wavenumber kH ≡ (k2

1 +k2
2)

1/2 = (k2
10 +k2

20)
1/2 = k sin θ are invariant

with time.
It is important to note the conditions for which the RDT in stably stratified shear

flow is valid. They are that the nonlinear term (u · ∇)u (u = (u1, u2, u3), |u| = O(u)) in
the Navier–Stokes equations is small compared to either the buoyancy term gρ/ρ0

(Derbyshire & Hunt 1993) or the mean shear term u3dU/dx3(= αu3). At the same
time the term (u · ∇)ρ must be small compared to u3 dρ/dx3 in the equation for the
density.

Using the eddy size l and its characteristic velocity u(l), the nonlinear term is
expressed as

(u · ∇)u = O

(
u2

l

)
, (2.10)

while the buoyancy term is

g

ρ0

ρ = O(uN2t) (if αt � 1 and Ri � O(1) (cf. § 3.3)), (2.11)

= O(uN)

(
if Nt � 1 and Frl =

u

Nl
� 1

)
, (2.12)

where Frl is the ‘eddy’ Froude number. Then, the buoyancy advection term is
estimated as

(u · ∇)ρ = O

(
uNt

dρ

dx3

)
, (2.13)

= O

(
u

u

Nl

dρ

dx3

)
, (2.14)



6 H. Hanazaki and J. C. R. Hunt

for these two conditions. Therefore, Frl = u/Nl � 1 is the necessary condition for
O((u · ∇)ρ) < O(u3dρ/dx3) independent of whether time t is small or large, and this
also ensures that nonlinear terms are smaller than buoyancy term, i.e. O((u · ∇)u) <

O((g/ρ0)ρ), so that the RDT approximations become valid.
The ratio of the nonlinear term to the mean shear term is given at all times by

1/Shl , where the eddy shear number Shl is defined by Shl =αl/u. Since the eddy
shear number and the eddy Froude number are related by 1/Shl = FrlRi1/2, for a fixed
Richardson number (Ri � O(1)), small 1/Shl is ensured automatically when Frl � 1.
Then, the condition 1/Shl � 1 is of only secondary importance for the validity of
RDT when the condition Frl � 1 is already satisfied. Therefore, the applicability
conditions for RDT are essentially the same as for the stratified flow with no shear
as given by Hanazaki & Hunt (1996).

At low and moderate Reynolds numbers as in laboratory experiments and DNS,
the eddy Froude number Frl = u/Nl � 1 is of the same order as the Froude number
defined by Fr0 = u0/Nl0, where u0 is the r.m.s. velocity and l0 is the scale of the energy-
containing eddy. Then the RDT equations (2.1) and (2.2) are valid for Fr0 � 1. On
the other hand, at high Re, RDT is not valid for the small scales of turbulence even if
Fr0 is small (cf. Hanazaki & Hunt 1996). We note that for small Richardson numbers
(Ri < 0.25) when linear instability occurs, for certain flows with non-uniform shear
(Miles 1961), the comparison between RDT and DNS results shows poorer agreement
as will be shown in § 6. This is because the condition of Frl � 1 is violated over a
wide wavenumber range in this more energetic turbulence.

RDT also becomes invalid at very large times when velocity fluctuations become
approximately two-dimensional in the horizontal plane, i.e. when Fr → 0. Two kinds
of motions occur: the slow nonlinear horizontal motion with time scale t ∼ l/u (
 N−1

if Fr � 1) or the fast (t ∼ N−1) linear wave motion, each of which described by the
horizontal two-dimensional Navier–Stokes equations for the ‘vortex’ mode or the
internal wave equations for the ‘wave’ mode (Riley, Metcalfe & Weissman 1981;
Riley & Lelong 2000). RDT describes the fast wave modes, while the slow vortex
mode with strong nonlinearity are not well described (e.g. Godeferd & Cambon 1994;
Cambon 2002).

However, the nonlinear vortex-mode equation derived under the assumption of
hydrostatic balance between the perturbation density and pressure is quantitatively
applicable only when the ratio of vertical to horizontal velocity is extremely small
(u3/u1 = αFr2, where α = l3/l1 is the ratio of vertical length scale to horizontal length
scale). This is not consistent with most experiments and DNS, which usually show
that u3/u1 � 0.5 (e.g. Itsweire, Helland & Van Atta 1986; Métais & Herring 1989). By
contrast the ratio is u3/u1 ∼ α in the linear wave-mode equation, which is consistent
with RDT.

Note that the wave mode and vortex mode can be described directly by using
the Craya–Herring frame (Métais & Herring 1989; Herring & Métais 1989) and the
behaviours of these two modes become clearer in that frame. But we use in this study
the usual Cartesian frame so that the comparison with the previous experiments and
most of the DNS can be made directly. The results in the Craya–Herring frame
can be reproduced by rotating the coordinates in the spectral space. Indeed, from
our results in the Cartesian coordinates (Hanazaki & Hunt 1999, 2001), Salhi (2002)
derived corresponding RDT solutions in the Craya–Herring frame.

In many experiments and observations in the ocean, horizontal motion leads to
slow changes of the mean flow so that N (x3) or dU1/dx3 may no longer be constant.
In that case, the assumptions of constant N and α in our RDT equations will not
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be satisfied. But RDT can be applied as a ‘local’ model to the various mean flow
conditions, as demonstrated by Galmiche & Hunt (2002).

3. Inviscid fluid
3.1. Calculation for spectra

The RDT equations have time-dependent coefficients when the flow has mean shear
and it becomes difficult to obtain the general solution. However, the equations for û3

and ρ̂ do not contain û1 and û2 so that those two equations can be solved separately.
Eliminating û3, we obtain a single equation for ρ̂ as

(
k2

10 + k2
20 + (k30 − αtk10)

2
)d2ρ̂

dt2
− 2αk10(k30 − αtk10)

dρ̂

dt
+

(
k2

10 + k2
20

)
N2ρ̂ =0. (3.1)

This equation belongs to the type which can generally be solved by the Euler
transform in the complex plane (e.g. Ince 1956). But here we derive a solution by a
simpler variable transform which has been verified a posteriori.

We notice that equation (3.1) becomes a Legendre equation

(1 − z2)
d2ρ̂

dz2
− 2z

dρ̂

dz
+ ν(ν + 1)ρ̂ = 0, (3.2)

if we put

z(t) = i
k30 − αtk10(
k2

10 + k2
20

)1/2
= i(cot θ0 − αt cos φ0)

= i
k3(t)

kH

= i cot θ(t), (3.3)

and select ν as

ν(ν + 1) = −
(
k2

10 + k2
20

)
N2

α2k2
10

, (3.4)

i.e.

ν =
1

2

[
− 1 ±

(
1 − 4

(
k2

10 + k2
20

)
N2

α2k2
10

)1/2
]

=
1

2

[
−1 ±

(
1 − 4

Ri

cos2 φ0

)1/2
]
. (3.5)

The solution consists of two Legendre functions of the first and second kind, i.e.
Pν1

and Qν1
. Since the two possible values of ν, i.e. ν1 and ν2 which take the sign of

+ and − respectively in (3.5), satisfy the relation ν2 = −ν1 − 1, the general relations
between the Legendre functions Qν1

=P−ν1−1 = Pν2
and Qν2

=P−ν2−1 = Pν1
show that

the solution is independent of the choice of ν. That is, we can for example alternatively
choose Pν2

and Qν2
as a solution. The Legendre function with order ν of the form

ν = −(1/2) ± iµ, where µ is a real number, is called a conical function or a Mehler
function. Our solutions become conical functions when Ri > 1/4 for all φ0, and when
Ri < 1/4 for restricted angles which satisfy (1/4) cos2 φ0 <Ri. Therefore, the analytical
solutions of the RDT equation are in general described by the Legendre functions
of complex degree with pure imaginary argument, and the linearly stable aspects of
the flow are in particular described by the conical function. We hereafter use ν to
represent ν1, and then write the solution as

ρ̂(t) = APν(z) + B Qν(z), (3.6)
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and substitute (3.6) into (2.2) to obtain û3 as

û3(t) = − iα cos φ0

N2
(AP ′

ν(z) + BQ′
ν(z)). (3.7)

Here, A and B are constants determined from the initial conditions ρ̂0 and û30, i.e.

A=
1

sin2 θ0

Q′
ν(z0)ρ̂0 +

N2

iα cos φ0 sin2 θ0

Qν(z0)û30, (3.8)

B = − 1

sin2 θ0

P ′
ν(z0)ρ̂0 − N2

iα cos φ0 sin2 θ0

Pν(z0)û30, (3.9)

where z0 = z(0) = i cot θ0 denotes the initial value of z and the primes denote
differentiation by z, i.e.

P ′
ν(z0) =

dPν

dz

∣∣∣∣
z=z0

. (3.10)

Next we calculate the three-dimensional spectra. In this study we assume that the
initial density fluxes are zero, i.e.

Φρi(k0, 0) =
1

2
ρ̂∗

0ûi0 + ρ̂0û
∗
i0 = 0 (i = 1, 2, 3). (3.11)

Then, we obtain

Φρ3(k(t), t) =
1

2
ρ̂∗û3 + ρ̂û∗

3

= Re

[
iα cos φ0

N2 sin4 θ0

(Pν(z)Q
′
ν(z0) − P ′

ν(z0)Qν(z))

× (P ′
ν(z)Q

′
ν(z0) − P ′

ν(z0)Q
′
ν(z))

∗Φρρ(k0, 0)

+
iN2

α sin4 θ0 cosφ0

(Pν(z)Qν(z0) − Pν(z0)Qν(z))

× (P ′
ν(z)Qν(z0) − Pν(z0)Q

′
ν(z))

∗Φ33(k0, 0)

]
, (3.12)

Φ33(k(t), t) =
1

sin4 θ0

|P ′
ν(z)Qν(z0) − Pν(z0)Q

′
ν(z)|

2
Φ33(k0, 0)

+
α2 cos2 φ0

N4 sin4 θ0

|P ′
ν(z)Q

′
ν(z0) − P ′

ν(z0)Q
′
ν(z)|

2
Φρρ(k0, 0), (3.13)

Φρρ(k(t), t) =
1

sin4 θ0

|Pν(z)Q
′
ν(z0) − P ′

ν(z0)Qν(z)|2 Φρρ(k0, 0)

+
N 4

α2 sin4 θ0 cos2 φ0

|Pν(z)Qν(z0) − Pν(z0)Qν(z)|2 Φ33(k0, 0), (3.14)

where the asterisks denote the complex conjugates. These expressions show that the
three-dimensional spectra are determined by Ri and αt , which are contained in ν and
z respectively.

Since the turbulence is initially nearly isotropic in usual laboratory experiments on
grid turbulence and in DNS, we consider initially isotropic turbulence in this study.
Then, the initial three-dimensional spectra are given by (Batchelor 1953)

Φij (k0, 0) =
E(k0)

4πk2
0

(
δij − ki0kj0

k2
0

)
, (3.15)
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and

Φρρ(k0, 0) =
S(k0)

4πk2
0

2N2, (3.16)

where

KE0 =

∫ ∞

0

E(k0) dk0 (3.17)

and

PE0 =
1

2N2

∫
Φρρ(k0, 0) dk0 =

∫ ∞

0

S(k0) dk0 (3.18)

are the initial turbulent kinetic and potential energy.

3.2. Variances and covariances

Using (3.15)–(3.18) and noting that the integration by k0 can be done separately, we
obtain the vertical flux of density as

ρu3(t) =

∫
Φρ3(k(t), t) dk0

=

∫ ∞

0

k2
0 dk0

∫ π

0

sin θ0 dθ0

∫ 2π

0

dφ0Φρ3(k(t), t)

=
α

2π
PE0

∫
dθ0 dφ0

cosφ0

sin3 θ0

× Re[i(Pν(z)Q
′
ν(z0) − P ′

ν(z0)Qν(z))(P
′
ν(z)Q

′
ν(z0) − P ′

ν(z0)Q
′
ν(z))

∗]

+
α

4π
RiKE0

∫
dθ0 dφ0

1

sin θ0 cos φ0

× Re[i(Pν(z)Qν(z0) − Pν(z0)Qν(z))(P
′
ν(z)Qν(z0) − Pν(z0)Q

′
ν(z))

∗]. (3.19)

Other variances and covariances can be calculated similarly and the results are

ρ2(t) =
N 2

2π
PE0

∫
dθ0 dφ0

1

sin3 θ0

|Pν(z)Q
′
ν(z0) − P ′

ν(z0)Qν(z)|2

+
N2

4π
RiKE0

∫
dθ0 dφ0

1

sin θ0 cos2 φ0

|Pν(z)Qν(z0) − Pν(z0)Qν(z)|2 , (3.20)

u2
3(t) =

1

2πRi
PE0

∫
dθ0 dφ0

cos2 φ0

sin3 θ0

|P ′
ν(z)Q

′
ν(z0) − P ′

ν(z0)Q
′
ν(z)|

2

+
1

4π
KE0

∫
dθ0 dφ0

1

sin θ0

|P ′
ν(z)Qν(z0) − Pν(z0)Q

′
ν(z)|

2
. (3.21)

We observe clearly that the time development of the variances and the covariances,
such as the kinetic and potential energies and the vertical density flux, are determined
by the initial total kinetic (KE0) and potential (PE0) energies and not by their specific
spectral forms when the fluid is inviscid. This is the same as for stratified turbulence
with no shear (Hanazaki & Hunt 1996). Since the expressions contain ν and z, the
functional forms are determined by Ri and αt , similarly to the three-dimensional
spectra.

The Reynolds stress u1u3 was calculated numerically in this study (cf. figure 3)
by solving a set of equations for the three-dimensional spectra Φij etc. and then
integrating the obtained Φ13 in the spectral space.
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We should note that for the spectral components of cos φ = cosφ0 = 0 (k1 = k10 = 0),
three-dimensional spectra are identical to the no-shear results since α is always coupled
with k1(= k10) in (3.1). For example, the spectrum for the vertical density flux becomes

Φρ3(k(t), t) = −sin θ

2N
Φρρ(k0, 0) sin(2Nt sin θ) +

N

2 sin θ
Φ33(k0, 0) sin(2Nt sin θ), (3.22)

in agreement with the no-shear solution (Hanazaki & Hunt 1996).
Therefore, if the energies and the fluxes have dominant contributions from the

spectral components of cos φ ∼ 0 (φ ∼ π/2, 3π/2), they will oscillate with period π/N

just like no-shear flow, as will be illustrated later in figures 6 and 8. The dominance of
components of φ = π/2, 3π/2 in the energies and the Reynolds stresses at large times
has been discussed by Moffatt (1967) for unstratified inviscid shear flow, noting that
contribution from the distorted spectrum of the initial vertical kinetic energy Φ33(k0, 0)
dominates the integral for the Reynolds stress −u1u3, although more detailed analysis
has been necessary in the evaluation of the integral, as noted later by Rogers (1991).

We should also note that this part of the spectrum is free from the additional viscous
damping enhanced by the shear (cf. § 4), and will become increasingly dominant as
time elapses.

The radial spectrum and the horizontal spectrum are also often dominated by
the same components, although the vertical spectrum is dominated by different
components (cos φ < 0, cf. § 5 and figure 20).

From (2.1) and (2.2) we can derive the following useful general relations among the
three-dimensional spectra directly:(

d

dt
+ 2νk2

)∑
i

Φii = −2αΦ13 − 2Φρ3, (3.23)

(
d

dt
+ 2κk2

)
Φρρ = 2N2Φρ3. (3.24)

These equations show that u1u3 extracts kinetic energy from the mean shear, while
the potential energy is supplied only by the exchange of ρu3 with the kinetic energy.
Adding these two equations and integrating, we obtain the total energy budget
equation for the inviscid fluid as

KE(t) + PE(t) = −α

∫ t

0

u1u3 dt + KE0 + PE0. (3.25)

3.3. Short-time approximations

When αt � 1 (and Nt � 1, with the assumption of Ri= N2/α2 � O(1)), we expand
Pν(z), P ′

ν(z), Qν(z) and Q′
ν(z) around z0 in (3.21) and (3.22), use the fundamental

relations between the Legendre functions such as Pν(z)Q
′
ν(z)− P ′

ν(z)Qν(z) = 1/(1− z2)
and its derivatives, then integrate analytically to obtain the short-time approximations.

The results for ρ2(t) and u2
3(t) (αt � 1, Nt � 1) after rather lengthy calculations are

ρ2(t) = 2N2

[
PE0 +

1

3
(Nt)2(KE0 − 2PE0) − 4

45
(Nt)4(KE0 − 2PE0)

− 2

105
(Nt)2(αt)2(KE0 − 3PE0)

]
, (3.26)

and

u2
3(t) =

2

3
KE0 − 8

15
(Nt)2(KE0 − 2PE0) − 8

105
(αt)2KE0. (3.27)
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Note that for Nt ∼ 1 or t ∼ 1/N , when α/N = Ri1/2 � 0.25, u2
3 decreases more rapidly

with shear. These results suggest that the energy ratio ER of potential energy to

vertical kinetic energy (VKE), i.e. ER≡ PE/VKE = (ρ2/2N2)/(u2
3/2) in the long-time

limit is different from the value for stratified flow without mean shear (= 3/2) since
the terms containing α have coefficients different from KE0 − 2PE0. In stratified
or stratified–rotating flow without mean shear, initially isotropic turbulence which
satisfies KE0 − 2PE0 = 3VKE0 − 2PE0 = 0 does not lead to any energy exchange at
any later time, showing that the initial condition ER0 ≡ PE0/VKE0 = 3/2 corresponds
to the final equilibrium state of turbulence (Hanazaki & Hunt 1996; Hanazaki 2002).
Indeed, numerical simulations for stratified turbulence with such initial conditions
showed very small vertical density flux, independent of whether there is a system
rotation or not (Ramsden & Holloway 1992). In the stratified shear flow, the terms
coupled with αt have different coefficients, showing that the mean shear modifies
the partition among the energies. We finally note that equation (3.27) reduces
to the results by Stretch (1986) and Derbyshire & Hunt (1992) if we substitute
PE0 = 0.

Differentiating (3.26) by time t , the vertical density flux can be obtained as

ρu3(t) =
1

2N2

dρ2

dt

=
2

3
N 2t(KE0 − 2PE0) − 16

45
N4t3(KE0 − 2PE0) − 8

105
N2α2t3(KE0 − 3PE0).

(3.28)

From (3.26)–(3.28), the short-time approximation for the normalized vertical density
flux when c ≡ PE0/KE0 = (1/3)ER0 (ER0 �= 0, ∞) becomes

ρu3

ρ2
1/2

u2
3

1/2
=

(
1

3c

)1/2

(Nt)

[
1 − 2c +

2

35
(αt)2(4c − 1)

− (1 − 2c)(Nt)2
(

8

15
+

(
1

6c
− 2

5

)
(1 − 2c)

)]
. (3.29)

This or (3.28) shows that whether c < 1/2 or c > 1/2, or equivalently ER0 < 3/2 or
ER0 > 3/2, determines the initial sign of the vertical density flux. This is the same as
for the stratified flow without mean shear (Hanazaki & Hunt 1996). Gerz et al. (1989)
considered the effect of ER0 and computed the case of ER0 =Ri, for which (3.29) at
the leading order gives (1 − 2Ri/3)αt . Their results also show that the initial vertical
density flux is smaller for larger Ri(� 1), in agreement with this prediction.

We note, however, that even when c = 1/2 (ER0 = 3/2), the flux increases slowly
with time due to the mean shear, since for this initial condition

ρu3

ρ2
1/2

u2
3

1/2
=

(
2

3

)1/2
2

35
(αt)2(Nt), (3.30)

and the flux changes at O(t3). This is different from the no-shear flow due to the
last term on the right-hand side of equation (3.26). It is of O(t3) and the growth
would be slow. We also note in (3.29) that the initial time development is determined
predominantly by Nt except when c =1/2 and the effect of shear appears only at a
higher order.
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When there is no initial potential energy (c = 0, i.e. PE0 = 0), the initial time
development of the normalized flux becomes

ρu3

ρ2
1/2

u2
3

1/2
= 1 − 1

35
(αt)2 + O(t4) = 1 − 1

35Ri
(Nt)2 + O(t4), (3.31)

which reduces to ρu3/(ρ2
1/2

u2
3

1/2
)(t → 0) = 1 when α = 0, in agreement with stratified

turbulence without mean shear (Hanazaki & Hunt 1996). This shows that, if PE0 = 0,
the initial time development of the vertical density flux is controlled by αt , not by Nt,
in contrast to the general case of PE0 �= 0. This will be illustrated in figure 1, where

the time development of ρu3/
(
ρ2 u2

3

)1/2
is plotted against αt , which gives the same

value for αt < 1, independent of Ri. On the other hand, the plot against Nt (figure 8)
shows that at smaller Ri there is significant decrease in the normalized flux when
Nt < 1.

However, when there is no initial kinetic energy (KE0 = 0, i.e. c = ∞), the initial
value of the normalized flux becomes

ρu3

ρ2
1/2

u2
3

1/2
(t → 0) = −

(
5

6

)1/2

, (3.32)

again in agreement with stratified flow without mean shear (Gerz & Yamazaki 1993;
Hanazaki & Hunt 1996).

The energy ratio ER of the potential energy PE to the vertical kinetic energy VKE
has a short-time approximation

ER =3c + (Nt)2(1 − 2c)

(
1 +

12

5
c

)
+

12

35
c(αt)2 + O(t4), (3.33)

for c �= 0, ∞. The initial increase or decrease is determined by whether c < 1/2 or
c > 1/2, in accordance with the sign of the vertical density flux (cf. (3.29)).

When c = 0 (PE0 = 0),

ER = (Nt)2
(

1 +
8

5
(Nt)2 +

2

35
(αt)2 + · · ·

)

= Ri(αt)2
(

1 +
8

5
Ri(αt)2 +

2

35
(αt)2 + · · ·

)
, (3.34)

When c = ∞ (KE0 = 0),

ER =
15

8
(Nt)−2

(
1 − 2

3
(Nt)2 +

8

45
(Nt)2 +

2

35
(αt)2 + · · ·

)
. (3.35)

These results show that the leading-order term is always determined by Nt and if we
plot the time development of ER against Nt, ER is independent of Ri, while if we
plot against αt , ER is proportional to Ri. Examples for PE0 = 0 are given in figures 4
and 6 of this paper and figure 18 of Holt et al. (1992), and examples for KE0 = 0 are
given by the dashed lines in figure 11 (Nt < 1) of this paper.

The above results for Ri � O(1) show that the effect of shear is generally weak
compared to the stratification effects during the initial time development because in
most cases shear appears at higher order of t in the expansion. However, with very
strong shear (Ri � 1), the effect of shear may become comparable to the stratification
effects even in the initial time development.
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4. Effects of viscosity and diffusion
With non-zero viscosity and diffusion, the solutions of (2.1) and (2.2) generally

become much more complicated, but if the Prandtl number Pr(= ν/κ) is equal to 1,
the solutions take a much simpler form given by

ûi =D(t)ûi inv (i = 1, 2, 3), (4.1)

and

ρ̂ = D(t)ρ̂ inv, (4.2)

where subscript inv denotes the inviscid solutions. Here, D(t) is a function which
satisfies (

d

dt
+ νk2

)
D = 0, (4.3)

with initial condition D(0) = 1, and is given by

D(t) = exp

(
−ν

∫ t

0

k2 dt

)
= exp

(
−νt

(
k2

0 − αtk1k30 +
1

3
(αt)2k2

1

))
, (4.4)

in agreement with the effects of viscosity on the shear flow without stratification
(Townsend 1976). Note that D is a function of both t and k0, but to clarify that it is
a solution of an ordinary differential equation (4.3), it is represented by D(t).

Then, for example, the inviscid three-dimensional spectra Φρ3(k, t)inv should be
multiplied by

D2(t) = exp

(
−2νt

(
k2

0 − αtk1k30 +
1

3
(αt)2k2

1

))

= exp

(
−2νtk2

0

(
1 − αt sin θ0 cos θ0 cos φ0 +

1

3
(αt)2 sin2 θ0 cos2 φ0

))
, (4.5)

to give the viscous and diffusive (Pr = 1) spectrum as

Φρ3(k, t) =Φρ3(k, t)invD
2(t). (4.6)

Although the results in this study are limited to Pr= 1, all the previous DNS for
stratified shear flow have also been done for Pr= 1 and direct comparison with them
is possible; and most of the results for Pr= 1 would be applicable also to the case
of Pr �= 1, except for the details of the unsteady aspects of the spectra and the final
decaying and layering processes which have been investigated by Pearson & Linden
(1983) and Hanazaki & Hunt (1996) for stratified unsheared turbulence.

In this study a viscosity term with real molecular viscosity coefficient is used to
describe the viscous damping. In previous studies large artificial turbulent viscosity
coefficients (Townsend 1976; Salhi & Cambon 1997) or the Rayleigh friction
proportional to the velocity (Hunt et al. 1988), has been used to model the rapid
initial decay ∝ t−1 (Nt < 1) as observed in the grid turbulence. For these methods the
comparison with experiments is better under an implicit assumption that significant
energy decay at large scales is due to the nonlinear energy transfer to small scales.
However, DNS (e.g. Gerz & Yamazaki 1993) usually does not show such a rapid
decay and since inclusion of such ‘modelling’ will further complicate the interpretation
of results, we do not use those methods in this study.
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The calculation of the energy and the fluxes (3.20)–(3.22) requires integrations such
as

ρu3(t) =

∫ ∞

0

k2
0 dk0

∫ π

0

sin θ0 dθ0

∫ 2π

0

dφ0Φρ3(k, t)invD
2(t), (4.7)

where integration by k0 involves the separate integrals∫ ∞

0

dk0E(k0)D
2(t),

∫ ∞

0

dk0S(k0)D
2(t). (4.8)

Then, if the initial energy spectrum is given by

E(k0) = KE0

4√
π

k2
0

k3
p

exp
(
−k2

0

/
k2

p

)
, (4.9)

which gives E(k0) ∝ k2
0 for k0/kp � 1 as in the experiments, the first integral of (4.8)

becomes

KE0

1[
1 + 2νtk2

p

(
1 − αt sin θ0 cos θ0 cos φ0 + 1

3
(αt)2 sin2 θ0 cos2 φ0

)]3/2
, (4.10)

where the term containing νtk2
p in the denominator denotes the viscosity effect.

On the other hand, if the initial energy spectrum is given by

E(k0) = KE0

(
2

9π

)1/2(
2

kp

)5

k4
0 exp

(
−2k2

0/k
2
p

)
, (4.11)

which gives E(k0) ∝ k4
0 for k0/kp � 1 (Saffman 1967) as has been often used in DNS

to model the final decay of turbulence, integration of E(k0)D
2(t) by k0 gives

KE0

1[
1 + νtk2

p

(
1 − αt sin θ0 cos θ0 cos φ0 + 1

3
(αt)2 sin2 θ0 cos2 φ0

)]5/2
. (4.12)

Then, with viscosity and diffusion but for Pr = 1, KE0 and PE0 in (3.20)–(3.22)
are replaced by functions of the form (4.10) or (4.12), which should be integrated by
θ0 and φ0. For example, if the initial energy spectrum E(k0) is given by (4.11), the
energies and the flux for a viscous and diffusive fluid (Pr = 1) become

ρ2(t) =
N 2

2π
PE0

∫
A

dθ0 dφ0fvis(θ0, φ0)
1

sin3 θ0

|Pν(z)Q
′
ν(z0) − P ′

ν(z0)Qν(z)|2

+
N2

4π
RiKE0

∫
B

dθ0 dφ0fvis(θ0, φ0)
1

sin θ0 cos2 φ0

|Pν(z)Qν(z0) − Pν(z0)Qν(z)|2 , (4.13)

u2
3(t) =

1

2πRi
PE0

∫
C

dθ0 dφ0fvis(θ0, φ0)
cos2 φ0

sin3 θ0

|P ′
ν(z)Q

′
ν(z0) − P ′

ν(z0)Q
′
ν(z)|

2

+
1

4π
KE0

∫
D

dθ0 dφ0fvis(θ0, φ0)
1

sin θ0

|P ′
ν(z)Qν(z0) − Pν(z0)Q

′
ν(z)|

2
, (4.14)

and

ρu3(t) =
α

2π
PE0

∫
E

dθ0 dφ0fvis(θ0, φ0)
cos φ0

sin3 θ0

× Re[i(Pν(z)Q
′
ν(z0) − P ′

ν(z0)Qν(z))(P
′
ν(z)Q

′
ν(z0) − P ′

ν(z0)Q
′
ν(z))

∗]

+
α

4π
RiKE0

∫
F

dθ0 dφ0fvis(θ0, φ0)
1

sin θ0 cos φ 0

× Re[i(Pν(z)Qν(z0) − Pν(z0)Qν(z))(P
′
ν(z)Qν(z0) − Pν(z0)Q

′
ν(z))

∗], (4.15)
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where

fvis(θ0, φ0) =
1[

1 + νtk2
p

(
1 − αt sin θ0 cos θ0 cos φ0 + 1

3
(αt)2 sin2 θ0 cos2 φ0

)]5/2
, (4.16)

and A to F label the integrals for later discussions (§ 6) on the insensitivity of the
energy ratio and normalized flux to initial energy partitions.

These results show that the decay rate of the energies and the fluxes indicated
by the powers of −3/2 or −5/2 depends on the initial spectral forms of E(k0) and
S(k0) for k0/kp � 1 as in the no-shear flow (Hanazaki & Hunt 1996). However, the
decay also depends on the peak wavenumber kp and the shear α, where the effect
of the latter has a directional (θ0 − φ0) preference. In particular, when k1 = k10 = 0
or equivalently cosφ0 = 0, there is no additional viscous decay due to the shear, as
already noted. Since ν is coupled only with α and not with N , the viscous decay is
controlled only by the shear even in stratified fluid. This shows that energy decay is
controlled by the initial spectra and shear even with stratification, and verifies the
conjecture by Hunt et al. (1988) that decay would be mainly controlled by the shear.

We also note in (4.13)–(4.15) that the energies and the fluxes are proportional to
KE0 and PE0 even in viscous fluids with Pr =1, showing that the energy spectral
form is of secondary importance in determining the energy and the flux.

5. Spectra
One-dimensional spectra in the x1-direction can be calculated as follows. First,

we rewrite the inviscid three-dimensional spectrum such as Φρ3 in the cylindrical
coordinates (r, ϕ) which satisfy k2 = r cos ϕ and k3(t) = r sin ϕ, so that the one-
dimensional spectrum becomes

Θρ3(k1, t) =

∫
Φρ3(k, t) dk2 dk3(t)

=

∫ ∞

0

r dr

∫ 2π

0

dϕΦρ3(k, t). (5.1)

Here, the viscous three-dimensional spectrum which should be substituted into (5.1)
is

Φρ3(k, t) = Φρ3(k, t)invD
2(t)

= Φρ3(k, t)inv exp

(
−2νt

(
k2 + αtk1k3 +

1

3
(αt)2k2

1

))

= Φρ3(k, t)inv exp

(
−2νt

(
k2

1 + r2 + αtk1r sin ϕ +
1

3
(αt)2k2

1

))
, (5.2)

with the inviscid three-dimensional spectrum given by

Φρ3(k, t)inv = Re

[
i

αk1

4π
(
k2

1 + r2 cos2 ϕ
)1/2

(
2
k2

1 + r2 cos2 ϕ + (r sin ϕ + αtk1)
2(

k2
1 + r2 cos2 ϕ

)2

× (Pν(z)Q
′
ν(z0) − P ′

ν(z0)Qν(z))(P
′
ν(z)Q

′
ν(z0) − P ′

ν(z0)Q
′
ν(z))

∗

× S
([

k2
1 + r2 cos2 ϕ + (r sin ϕ + αtk1)

2
]1/2)

+
Ri

k2
1

(Pν(z)Qν(z0) − Pν(z0)Qν(z))(P
′
ν(z)Qν(z0) − Pν(z0)Q

′
ν(z))

∗

× E
([

k2
1 + r2 cos2 ϕ + (r sin ϕ + αtk1)

2
]1/2))]

, (5.3)
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where

z(t) = i cot θ = i
r sin ϕ(

k2
1 + r2 cos2 ϕ

)1/2
, (5.4)

z0 = i cot θ0 = i(cot θ + αt cos φ) = i
r sin ϕ + αtk1(

k2
1 + r2 cos2 ϕ

)1/2
, (5.5)

and

ν =
1

2

[
−1 +

(
1 −

4Ri
(
k2

1 + r2 cos2 ϕ
)

k2
1

)1/2
]
. (5.6)

Three-dimensional radial spectra, such as E33(k) which gives vertical kinetic energy

(1/2)u2
3 =

∫ ∞
0

E33(k) dk, are calculated using

E33(k) = E33(|k|) =
1

2
k2

∫
Φ33(k, t) sin θ dθ dφ, (5.7)

where Φ33(k, t) is given in the distorted coordinates (k(t), θ(t), φ) by

Φ33(k, t) = Φ33(k, t)invD
2(t)

= Φ33(k, t)inve
−2νtk2(1+αt sin θ cos θ cos φ+ 1

3 (αt)2 sin2 θ cos2 φ). (5.8)

Here, Φ33(k(t), t)inv must be rewritten in distorted coordinates as

Φ33(k, t)inv =
cos2 φ

2πRik2 sin3 θ

(
sin2θ + (cos θ + αt sin θ cos φ)2

)
× |P ′

ν(z)Q
′
ν(z0) − P ′

ν(z0)Q
′
ν(z)|2S(k[sin2 θ + (cos θ + αt sin θ cos φ)2]1/2)

+
1

4πk2 sin2 θ
|P ′

ν(z)Qν(z0) − Pν(z0)Q
′
ν(z)|

2

× E(k[sin2 θ + (cos θ + αt sin θ cos φ)2]1/2), (5.9)

where

z(t) = i cot θ, z0 = i cot θ0 = i(cot θ + αt cos φ), (5.10)

and

ν =
1

2

[
−1 +

(
1 − 4Ri

cos2 φ

)1/2
]

. (5.11)

Other one-dimensional spectra and three-dimensional radial spectra can be
calculated similarly using the inviscid three-dimensional spectra (3.12)–(3.14) and
rewriting them using appropriate coordinates.

We should note here that, in the spectrum at large times, such as E33(k) for αt 
 1,
the contribution of the initial spectrum given in the form of E(k0) = E(k[sin2 θ +
(cos θ + αt sin θ cos φ)2]1/2) (cf. (5.9)) decreases rapidly except where sin θ � 1 or
|cosφ| � 1. A similar discussion has been given in Hunt & Carruthers (1990). Finally,
we mention that there is one exception to this, which occurs in the vertical spectrum
where negative cos φ, or cos φ = −1 (i.e. φ = π) becomes dominant (cf. figure 20, § 6).

6. Comparison with DNS and experiments
Figure 1 shows the time development of the normalized vertical density flux

ρu3/(ρ2 u2
3)

1/2 when Pr =1, PE0 = 0, Re0 = u0l0/ν = ((2/3)KE0)
1/2l0/ν = 42.7 and the
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Figure 1. Time development of the normalized vertical density flux when Pr = 1, KE0 = 1.015
and PE0 = 0 with E(k0) given by (4.11). α = 2.729, kp = 4, ν = 0.01742, l0 = 0.9044,

Re0 = u0l0/ν = ((2/3)KE0)
1/2l0/ν = 42.7. (a) RDT: ————, Ri=1.32; — - - — - - —, Ri=0.66;

— - — - —, Ri= 0.33; — — —, Ri=0.13; – – – –, Ri=0.0825; - - - - - - - - - -, Ri= 0.055.
(b) DNS by Gerz & Schumann (1991).

initial kinetic energy spectrum E(k0) is given by (4.11) (kp = 4). The conditions are
the same as those used in DNS by Gerz & Shumann (1991). Comparison of the
RDT results with DNS shows good agreement, including the oscillation period of
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the flux and the appearance of the mainly persistent countergradient flux at large
Richardson numbers (Ri = 0.66, 1.32). Although this effect has been identified by
some other authors as a general characteristic of stratified ‘shear’ flow, we find that
for larger Ri (> 1.0) the countergradient flux does not persist. As will be shown
later in figure 8, the average flux will become nearly zero in the limit of Ri → ∞
(no shear). The DNS results generally give a weaker countergradient flux than RDT,
which could be attributable to nonlinear effects as discussed in previous studies on
stratified turbulence without mean shear (Gerz & Yamazaki 1993; Hanazaki & Hunt
1996).

Figure 1(a) shows that the initial fluxes at the same αt (< 0.7) agree for different Ri
(i.e. different N ), showing that the initial time development is mainly determined by
shear α under the condition of PE0 = 0. These characteristics, which have also been
observed in DNS (e.g. Holt et al. 1992, see their figure 15), can be explained by the
short-time approximations of RDT for PE0 = 0 described in (3.31).

We should note here that in DNS for different Ri =N 2/α2, N has usually been
varied while α is kept constant. In Gerz & Shumann (1991), the initial shear number
Sh0 = αl0/v0 defined by the initial integral scale l0 and the initial r.m.s. velocity v0 is
kept constant, while the initial Froude number Fr0 = v0/Nl0 is changed. Since these
parameters have the relation Ri = 1/(Fr0Sh0)

2, when Sh0 is a constant, large Ri means
small Fr0, i.e. weaker nonlinearity. Therefore, larger Ri should give better agreement
between RDT and DNS. In Gerz & Schumann (1991) where Sh0 = 3, the formal
applicability condition of RDT, i.e. Fr0 = 1/(Sh0Ri1/2) < 1 (Hanazaki & Hunt 1996)
is satisfied for Ri > 0.58. This is consistent with the fact that good agreement between
RDT and DNS is obtained for Ri � 0.66 in figure 1. In other words, even for the same
Ri, simultaneous realization of stronger stratification (smaller Froude number Fr)
and stronger shear (larger shear number Sh) leads to weaker nonlinearity. Therefore,
it is important to know the values of Sh0 (or α) and Fr0 (or N ) in addition to Ri to
estimate the strength of the nonlinear effects in DNS. In DNS of Holt et al. (1992),
the initial shear number is Sh0 = 0.6, much lower than that used by Gerz & Schumann
(1991), leading to stronger nonlinearity and a weaker countergradient density flux.

In their study for Pr= 1, the minimum value of ρu3/(ρ2 u2
3)

1/2 when Ri= 1 is −0.17,
while in figure 1(b) (Gerz & Schumann 1991), stronger countergradient flux (∼ − 0.2)
is achieved even at Ri = 0.66 although a special top-hat type initial energy spectrum
E(k0) has been used by Holt et al. (1992).

Figure 2 shows the time development of the potential energy under the same
conditions as figure 1. The agreement between RDT and DNS for large Ri(� 0.33)
is good. For small Richardson numbers (Ri � 0.13), the RDT predicts a monotonic
decay, because RDT incorrectly predicts that the vertical velocity fluctuations are
suppressed by shear (e.g. Hunt & Carruthers 1990; Lee, Kim & Moin 1990). The
nonlinear transfer of energy between different flow directions is the reason why the
DNS shows an increase in potential energy.

The momentum flux or Reynolds stress results in figure 3 show the same transition
as the vertical density flux as Ri increases above ∼ 0.1, when (for finite strain time
αt) the structure of the fluctuations changes and the stress changes sign, and there
is an oscillatory countergradient flux for a certain periods of time. As Ri increases
further (Ri > 0.33) the Reynolds stress becomes permanently negative, but decreasing
in magnitude. Thus the suppression of Reynolds stress by stable stratification for Ri
greater than a critical value Ricrit ∼ 0.3 is in general not caused by suppression of
linear instability. Rather, it is because the dynamics of the eddy structure changes as
Ri increases above ∼ 0.1 so as progressively to reduce the proportion of the time that
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Figure 2. Time development of the potential energy PE under the same conditions as figure 1.
(a) RDT; ————, Ri= 1.32; — - - — - - —, Ri= 0.66; — - — - —, Ri= 0.33; — — —, Ri=
0.13; – – – –, Ri= 0.0825; - - - - - - - - - -, Ri= 0.055. (b) DNS by Gerz & Schumann (1991).

the Reynolds stress is positive. Therefore, the shear production of turbulent energy
becomes negative, which rapidly reduces the vertical turbulence. As the analysis
and DNS results of Galmiche & Hunt (2002) demonstrate, the effect of this on a
typical mean velocity profile where d2U/dx2

3 �= 0 is to change the mean flow profile
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Figure 3. Time development of the Reynolds stress −u1u3/(u
2
1

1/2
u2

3

1/2
) obtained by RDT

under the same conditions as figure 1. ————, Ri= 1.32; — - - — - - —, Ri=0.66; — - — - —,
Ri= 0.33; — — —, Ri=0.13; – – – –, Ri= 0.0825; - - - - - - - - - -, Ri= 0.055.

with a back reaction on the turbulence. It can lead to either a stable or unstable
flow pattern depending on dρ/dx3 and ∂U1/∂x3(x3) (see also the conjectures of
Derbyshire 1994)

Figure 4 shows the time development of the energy ratio ER ≡ PE/VKE in stratified
shear flow, where VKE is the vertical kinetic energy. The energy ratio ER at large times
(αt � 10) decreases for Ri > 0.25 with the increase of Ri. This tendency agrees with the
DNS by Holt et al. (1992) for Pr = 1 and PE0 = 0, although they assumed a top-hat
type initial kinetic energy spectrum as noted earlier. The specific values of ER(Nt 
 1
or αt 
 1) are also in good agreement between RDT and DNS for Ri � 0.25, as
will be shown later in figure 11. Comparison of the RDT results for Ri = 0.25 and
Ri= 0.088 suggests that at large αt ER is smaller for smaller Ri for low Ri(< 0.25).
But longer time development (cf. figure 6) until Nt =12 (αt = Nt/Ri1/2 = 40.5 when
Ri= 0.088) shows that for Ri = 0.088 ER increases considerably with time and reaches
its largest value, showing that the smallest value of Ri gives the largest ER over long
times. This is different from the previous results of DNS and experiments (cf. figure 8
of Schumann & Gerz 1995). For example, DNS by Holt et al. (1992) shows that ER
reaches its maximum at about Ri =0.25 and the value at Ri =0.088 is much smaller
(ER ∼ 0.9) at αt =14, although the DNS gives data only for αt � 14 and longer time
development might give somewhat different behaviour. When the Richardson number
is small (Ri < 0.25), nonlinear effects lead to the potential energy PE becoming larger
than for the linear prediction (cf. figure 2). But the vertical kinetic energy VKE is even
greater as noted in the discussion of figure 2, implying that ER should be less than for
the linear prediction. Previous studies do not give the associated time development of
VKE.

Figure 5 shows that the inviscid results (Re = ∞) for ER give values about twice as
high as for the case Re ∼ 43 in figure 4, indicating that in shear flows, the ratios of
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Figure 4. RDT results for the time development of energy ratio ER= PE/VKE under the
same conditions as figure 1. ————, Ri= 1; — - — - —, Ri=0.5; – – – –, Ri= 0.25;
- - - - - - - - - -, Ri=0.088.

Figure 5. Inviscid RDT results for the time development of ER. The conditions are the same
as figure 1 except that ν = 0. — - — - —, Ri= 0.5; – – – –, Ri= 0.25; - - - - - - - - - -, Ri= 0.088.

energies and the fluxes depend on whether or not the flow is inviscid. Here Pr =1. This
differs from the case with no shear (Hanazaki & Hunt 1996). Without shear (α = 0),
the viscosity factor given by (4.16) reduces to fvis(θ0, φ0) = 1/(1 + νtk2

p)5/2 which is
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Figure 6. Time (Nt) development of the energy ratio ER= PE/VKE for fixed N (= 2.729).
The conditions are the same as figure 1 except that α varies according to Ri=N2/α2 while N
is fixed. At Nt= 4, from top to bottom, Ri= 0.088, 0.25, 0.4, 0.5, 0.66, 1.0, 1.32 and ∞. Dashed
lines are used only to differentiate the neighbouring lines.

independent of θ0 and φ0, so that it is constant in the integrand of the variances and
fluxes given by (4.13) to (4.15). Then the viscosity factor fvis is cancelled out when we
consider the ‘ratios’ of the energies and the fluxes, and the flow at Pr =1 gives identical

ratios as for the inviscid fluid, including ER and ρu3/(ρ2 u2
3)

1/2. On the other hand,
in shear flow, the viscosity effect has directional preference in the spectra as noted in
§ 4. Figure 7, which shows θ0 − φ0 distributions of the integrand for PE (integral B

in (4.13)) and VKE (integral D in (4.14)), demonstrates that the distribution is more
localized to φ = π/2 and 3π/2 in VKE than in PE, with smaller values away from
φ0 = π/2, 3π/2. This explains why there are weaker effects of viscosity on VKE than
on PE, and thence why there is a smaller ER(=PE/VKE) in the viscous fluid. This
localization also explains how the time oscillation of ER is maintained by a distinct
oscillation of VKE near φ0 = π/2, 3π/2 (cf. § 3.2), while PE is almost monotonically
decaying as shown in figure 2.

In figures 1 and 4, we notice that the oscillation period of the flux and energy ratios
decreases with increasing Ri if we plot against αt . However, as shown in figures 6
and 8, the oscillation is actually determined by Nt (with period π/N ), showing that
the oscillation is controlled by stratification even in a shear flow. This has been
previously noted in DNS by Holt et al. (1992, figure 21). What is interesting here is
that, in the analytical forms of RDT solutions for the three-dimensional spectra or
the fluxes, such as (3.12)–(3.14) and (3.20)–(3.22), time t appears in variable z only in
the form of αt (cf. (3.3)), and Nt does not appear explicitly.

As already noted in § 3.2, the shear has no effect at cos φ0 = 0, and the solution there
is identical to the no-shear flow, which is determined only by Nt. Then, the oscillation
of the spectra near cos φ0 = 0 and its dominance is the reason why Nt becomes a
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Figure 7. Integrand for the integrals B and D in (4.13) and (4.14), each of which gives the
contribution of KE0 to PE and KE respectively. Ri= 1.32, N = 2.729. Other conditions are the
same as figure 1. (a) B (Nt= 3.6); (b) B (Nt =5.2); (c) D (Nt= 3.6); (d) D (Nt= 5.2).

controlling parameter rather than αt , although in figures 6 and 8 comparison of the
results with and without shear shows a small ‘phase delay’ due to the shear.

We notice from (4.10) that to isolate the effect of shear α, not only Nt but also νt

must be identical, otherwise differences caused by viscosity obscure the result. In this
study, comparisons are made for the same N , ν and t , i.e. for the same Nt and νt . For
example in figures 6–8, we used fixed N and ν, while varying α to obtain different Ri.
These conditions have not been considered in the previous DNS studies.

In figure 6, ER (Nt 
 1) becomes almost independent of Ri (i.e. independent of
shear) at large Ri (� 0.66), and in the limit of no shear (Ri = ∞), the ratio asymptotes
to ER= 3/2 (Hanazaki & Hunt 1996). This is because at large Ri(� 0.66), both VKE
and PE increase for larger Ri (i.e. weaker shear), while at small Ri(� 0.66), VKE
increases but PE decreases for larger Ri so that ER decreases. On the other hand,
when VKE and PE are plotted against αt , larger Ri (i.e. larger N ) generally leads to
smaller VKE and PE. This energy reduction occurs mainly at low wavenumbers (cf.
figure 13).

Figure 7 shows the integrand for PE (cf. integral B in (4.13)) and VKE (cf. integral
D in (4.14)) corresponding to the flow in figure 6 (Ri =1.32). When ER takes a local
minimum at Nt = 3.6, the integrand of PE (figure 7a, b) near φ0 = π/2 and 3π/2 is
nearly zero, while when ER takes a local maximum at Nt = 5.2 (∼ 3.6 + π/2) the
components near φ0 = π/2 and 3π/2 become large. On the other hand, the integrand
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Figure 8. RDT results for the time development of the normalized vertical density flux for
fixed N (= 2.729). The conditions are the same as figure 1 except that α varies according
to Ri= N2/α2 while N is fixed. ————, Ri= ∞; — - — - —, Ri= 1; – – – –, Ri= 0.4;
- - - - - - - - - -, Ri= 0.25.

of VKE (figure 7c, d) oscillates in opposite phase to PE. This illustrates that the time
oscillation of ER is due to the oscillation of the spectral components at φ0 = π/2,

3π/2, where the solution is exclusively determined by the stratification, as noted
in § 3.2.

This also explains the unsteady behaviour of the one-dimensional spectra in the
experiments (Piccirillo & Van Atta 1997) similar to the RDT results given in figure 19)
which shows that in the time interval when ER is increasing, Θρρ(k1) increases at low
k1 (| cos φ0| � 1) due to stratification, while it decreases at high k1 due to diffusion.

Figure 8 shows the time development of the normalized vertical density flux

ρu3/(ρ2 u2
3)

1/2 as a function of Nt for finite Re ∼ 43. The oscillation period is equal
to π/N , like ER (figure 6), and the results for Ri = 0.25 and 0.4 show a ‘persistent’
countergradient flux. We note that having smaller Ri, i.e. larger α, makes the earliest
and the strongest countergradient flux weaker, showing that the shear reduces the
countergradient flux. This is in agreement with the experiments by Komori & Nagata
(1996) for Ri =0.4, 1 and ∞, where the stronger shear with the same vertical
temperature difference gave a weaker countergradient flux. We should note that,
although the flux for no shear (Ri = ∞) gives large-amplitude oscillations, it oscillates
in proportion to ∼ (Nt)−1/2 sin(2Nt) long time (Hanazaki & Hunt 1996) so that the
time-averaged value becomes zero. Then, when considering the time averaged value,
the larger Ri does not necessarily give a stronger countergradient flux. In figure 8
(0 � Nt � 12), Ri ∼ 0.4 gives the strongest ‘persistent’ countergradient flux.

Figure 9 shows the effect of initial energy ratio (ER0) between the potential energy
and the kinetic energy (ER0 = 0, ∞) on the time development of normalized vertical

density flux ρu3/(ρ2 u2
3)

1/2. It shows that the flux oscillates in opposite phase for
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Figure 9. RDT results for the time development of the normalized vertical density flux for
two initial conditions PE0 = 0(ER0 = 0) and KE0 = 0(ER0 = ∞) for Ri= 0.5 and 1.0. Other
conditions are the same as figure 1. ————, Ri= 1, PE0 = 0; — - — - —, Ri= 0.5, PE0 = 0;
– – – –, Ri=1, KE0 = 0; - - - - - - - - - -, Ri=0.5, KE0 = 0.

ER0 = 0 and ∞, but asymptotes to a value independent of ER0(= 0, ∞) at long

time. The initial values of ρu3/(ρ2 u2
3)

1/2 agree with the prediction of the short-time

approximation. For example, when ER0 = 0, ρu3/(ρ2 u2
3)

1/2 → 1 (αt → 0) as already

observed in figure 1, and when ER0 = ∞, ρu3/(ρ2 u2
3)

1/2 → −
√

5/6 = −0.913 (cf. (3.32)).
The flux for Ri = 1 shows that at larger Ri, i.e. with stronger stratification N , there
is initially (2 � αt � 4) a stronger countergradient flux. But the mean value of the
flux becomes more negative for Ri = 0.5 (smaller N ) at long times, in agreement with

figures 1 and 8. We have computed ρu3/(ρ2 u2
3)

1/2 for other values of ER0 which
satisfy ER0 = Ri, as has been investigated by Gerz et al. (1989), and confirmed good
agreement. But the simultaneous change of ER0 and Ri makes the interpretation
complicated and we do not show those results here.

Figure 10 for ER also shows that the different initial energy ratios asymptote to
the same value, although the tendency to asymptotic agreement is slow for Ri= 0.25.
The final value of ER is determined by Ri here, but will depend also on the Prandtl
number Pr since viscosity and diffusion will affect VKE and PE differently. Indeed,
inviscid fluid generally gives larger values of ER as noted earlier in figure 5.

Previous DNS (Holt et al. 1992) have also shown that the long-time-limit values

of the energy ratio ER (αt 
 1) and the normalized flux ρu3/(ρ2 u2
3)

1/2(αt 
 1) are
insensitive to the initial value of ER0. At first sight, the insensitivity suggests the
dominance of nonlinear effects, but our results show that it occurs in the linear
framework.
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Figure 10. RDT results for the time (Nt) development of ER, for two initial conditions
PE0 = 0 (ER0 = 0) and KE0 = 0(ER0 = ∞) but for fixed N (= 2.729). The conditions are the
same as figure 1 except that α varies according to Ri=N2/α2. ————, PE0 = 0; – – – –,
KE0 = 0. From top to bottom at Nt= 5.5, Ri=0.25, 0.4, 0.5, 0.66, 1.0, 1.32.

To consider the reason why this occurs, we rewrite (4.13) to (4.15) in the following
form:

PE =
1

2N2
ρ2 =

1

4π
PE0 × A(Ri, αt) +

Ri

8π
KE0 × B(Ri, αt), (6.1)

VKE =
1

2
u2

3 =
1

4πRi
PE0 × C(Ri, αt) +

1

8π
KE0 × D(Ri, αt), (6.2)

and

ρu3 = α

(
1

2π
PE0 × E(Ri, αt) +

Ri

4π
KE0 × F (Ri, αt)

)
, (6.3)

Where A to F denote the integrals in equations (4.13)–(4.15).
If A × D = B × C or equivalently A/B = C/D(=f (Ri)) holds when αt 
 1, the

energy ratio ER asymptotically becomes

ER(αt 
 1) =
PE

VKE
=

B(Ri, αt 
 1)

D(Ri, αt 
 1)
Ri =

A(Ri, αt 
 1)

C(Ri, αt 
 1)
Ri. (6.4)

This shows clearly that ER (αt 
 1) is independent of the initial energy ratio
ER0 = PE0/VKE0 and depends only on the asymptotic (αt 
 1) ratios of the integrals
which are determined by Ri. Physically the result A/B = C/D(=f (Ri)) shows that the
ratios of the contributions from PE0 and KE0 are the same in PE and VKE, so that
ER (αt 
 1) is independent of ER0.
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Figure 11. Richardson number dependence of the asymptotic value of ER (Nt → ∞) when
Pr = 1. Open circle denote the RDT results and the closed circle denote the DNS by Holt
et al. (1992). The line at ER= 3/2 shows the RDT prediction for no-shear flow (Ri= ∞).

If, in addition, B × E = A × F (αt 
 1) holds, then A/B = C/D = E/F = f (Ri)
(αt 
 1), indicating that

ρu3(
ρ2 u2

3

)1/2
(αt 
 1) =

F (Ri, αt 
 1)

[B(Ri, αt 
 1)D(Ri, αt 
 1)]1/2

=
E(Ri, αt 
 1)

[A(Ri, αt 
 1)C(Ri, αt 
 1)]1/2
, (6.5)

independent of ER0. In the linear framework (RDT) numerical evaluation of integrals
A to F indeed shows that the relation A/B = C/D = E/F asymptotically holds at

large times (αt 
 1). This is the reason why ER or ρu3/(ρ2u2
3)

1/2 is independent of
the initial value ER0.

The long-time-limit value of ER obtained numerically is given in figure 11, which
shows that ER(t → ∞) is a decreasing function of Ri for Ri � 0.25. The dependence
on Ri becomes weak for Ri � 0.66 but ER will decrease further as Ri → ∞, since it
will asymptote to 3/2 in the limit of Ri = ∞ (Hanazaki & Hunt 1996) as indicated
by the straight line in the figure. The obtained values of ER(Nt → ∞) agree well with
DNS by Holt et al. (1992) for Ri � 0.25, although the initial energy spectrum E(k0) is
different. For small Ri(< 0.25) where RDT results are not plotted, RDT significantly
overestimates ER(t → ∞) as already noted in figures 4–6.

Figure 12 shows the time development of the one-dimensional co-spectrum −Θρ3(k1)
(Ri =0.5) when it becomes countergradient (i.e. positive). The initial conditions are
PE0 = 0 and E(k0) is given by (4.9) as usually in experiments. Other parameters ν,
α and kp are chosen to agree with the experiments by Piccirillo & Van Atta (1997).
At αt =2.8, −Θρ3(k1) becomes countergradient, first at high wavenumbers. Since the
solution of the RDT equations such as −Θρ3(k1) contains αt in the form of αtk1, time
t is always coupled with k1. In addition, in the variable z0 = i(r sin ϕ + αtk1)/(k

2
1 +

r2 cos2 ϕ)1/2 (cf. (5.5)) which determines the time oscillation, αtk1/(k
2
1 + r2 cos2 ϕ)1/2

increases monotonically with k1. Then, the increase of k1 and of t has a similar effect.
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Figure 12. Time development of the one-dimensional cospectrum −k1Θρ3(k1)/α for Ri= 0.5.
The conditions are similar to the experiments by Piccirillo & Van Atta (1997) except for the
Prandtl number (Pr = 1) and that E(k0) is given by (4.9). In the experiments, U = 220 cm s−1,
peak frequency f = 10 s−1, ν = 0.15 cm2 s−1, α = 3.35 s−1, but non-dimensionalization by length
scale l = 2π/220 cm is used here so that peak wavenumber becomes kp = 10 instead of
2πf/Ucm−1. From bottom to top, each line corresponds to αt =2.4, 2.8, 3.2, 3.6 and 4.0
respectively. (a) RDT, (b) experiments by Piccirillo & Van Atta (1997).

This explains why the countergradient spectra occur sooner at high wavenumbers
and agrees with the stratified shear flow experiments for high (Pr = 6600: Komori &
Nagata 1996) and low Prandtl numbers (Pr =0.7: Piccirillo & Van Atta 1997).
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Figure 13. Three-dimensional radial spectra E33(k) at αt = 20 for various Ri. Pr =1, E(k0)

given by (4.9), kp = 20, ν = 0.01, α = 20
√

2. The conditions are similar to DNS by Holt et al.
(1992) except the functional form of E(k0). — - — - —, Ri= 0; - - - - - - - -, Ri=0.088; – – – –,
Ri= 0.25; ———–, Ri= 1.

This is in contrast to the no-shear flow, where Pr= 0.7(< 1) gives low-k1

countergradient flux (Lienhard & Van Atta 1990; Yoon & Warhaft 1990) while
Pr = 6(> 1) gives high-k1 countergradient flux (Komori & Nagata 1996). The RDT
result for no-shear flow (Hanazaki & Hunt 1996) shows this difference due to the
Prandtl number, but it gives high-k1 countergradient flux in the one-dimensional
spectra also for Pr= 1 and inviscid fluid. Therefore, we should be cautious about the
Prandtl number dependence in the one-dimensional spectra and further investigations
are needed on the effect of the Prandtl number (Pr �= 1) in shear flow.

Figure 13 shows the radial spectra of the vertical kinetic energy E33(k) (cf. (5.7))
at large time (αt = 20), under the same conditions as Holt et al. (1992) except the
initial spectral form. In general the effect of stratification is more significant at low
wavenumbers as conjectured by Hunt et al. (1988) in their length-scale analysis. With
the increase of Ri (or N ), a flat spectrum (∝ k0) appears for 1 � k � 10. The flat
spectrum can be observed also in the DNS results by Holt et al. (1992, see their
figure 9) for Ri = 0.088, although RDT results may not be applied to the linearly
unstable cases where Ri < 0.25.

When there is no stratification (Ri = 0), the asymptotic spectrum gives a region of
E33(k) ∝ k−1 power spectrum at 1 � k � 10. This can be verified by noting that the
main contribution to the integral representation of E33(k) comes from near θ(t) = π/2
and φ = π/2, 3π/2 (see also figure 14c) in the initial energy spectrum E(k0), as already
discussed at the end of § 5. The asymptotic analysis (αt 
 1) for E33(k) with Ri= 0,
i.e. for

E33(k) =
1

8π

∫ π

0

dθ

∫ 2π

0

dφ sin3 θE
(
k[sin2 θ + (cos θ + αt sin θ cos φ)2]1/2

)
× exp

(
−2νtk2

(
1 + αt sin θ cos θ cos φ +

1

3
(αt)2 sin2 θ cos2 φ

))
, (6.6)
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Figure 14. Integrand of E33(k) at αt = 20 and Ri= 1 for various wavenumbers. Conditions
are the same as figure 13. (a) k = 10−1; (b) k = 1; (c) k = 10.

shows that the vertical velocity spectrum asymptotically (αt 
 1) has the form

E33(k) ∼ 2KE0

αtk

(
kp

αt
� k � kp

)
. (6.7)
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Here, the peak wavenumber kp is comparable with the inverse of the energy-
containing scale l0 or the integral scale LX (kp ∼ l−1

0 ∼ L−1
X ). Other initial spectra such

as (4.11) lead to the same k−1 spectrum independent of the viscosity. This illustrates,
and we can also verify analytically, that the low-wavenumber power spectrum of the
form ∝ k−1 is independent of the initial spectrum as long as initially it has the form
of E(k0) ∝ k2n

0 (n � 1) at low wavenumbers (k0 � kp).
Since the lower bound for k is given by kp/(αt) in (6.7), the k−1 spectrum extends

to progressively lower wavenumbers with time αt . This could be verified by the
numerical results, although the time development is not shown here.

In a study of the high-wavenumber spectrum (kp � k � (αt)kp) in unstratified
shear flows (Hunt & Carruthers 1990), assuming significant nonlinear effects at
low wavenumbers where much energy resides, the initial spectrum of the form
E(k0) ∝ exp(−k2

0/k2
p) has been used and it asymptotically gave E33(k) ∝ k−4. In

contrast the present results show that the k−1 spectrum reflects the characteristics
of turbulence at lower wavenumbers. Further studies of these general asymptotic
properties of spectra are needed.

The effect of stratification N is clearly observed at low wavenumbers (k � 1),
where a significant decrease of vertical kinetic energy due to large N (or Ri) is
observed. Therefore, when VKE is plotted against αt , larger N (i.e. Ri) gives smaller
VKE as noted earlier (see the discussion of figure 6). Thus the decay of VKE is
faster for larger N . In the very low-wavenumber region (k � 1), E33(k) ∝ k2 holds
for all Ri since (4.9) gives E(k0) ∝ k2

0(k0 � kp) there so that E(k0) = E(k(sin2 θ +

(cos θ +αt sin θ cos φ)2)1/2) ∝ k2(sin2 θ +(cos θ +αt sin θ cos φ)2) (k � kp) and the factor
k2 is cancelled in Φ33(k, t)inv, which is given by (5.9). In addition, the viscosity
effects contained in Φ33 (cf. (5.8)) are negligible when νtk2 � 1 is satisfied. Therefore,
Φ33 is independent of k at low wavenumbers, and (5.7) gives E33(k) ∝ k2 if both
νtk2 � 1 and k � kp are satisfied. In the present case, at αt =20 these conditions
become k � 1/(νt)1/2 ∼ 12 and k � kp = 20, consistent with the numerical results,
i.e. k � 1.

On the other hand, at high wavenumbers (k � 100.5), the results for Ri > 0 (i.e.
N �= 0) give almost the same spectra, suggesting that the effect of stratification N

(�=0) is not important. However, over a long time (αt 
 1), comparison with the
spectrum for unstratified flow (Ri =0) shows that even a weak stratification gives a
significant reduction of E33(k). At large times dominant contributions to E33(k) (for
k � 100.5) come from near φ = π/2, 3π/2 (see the end of § 5 and figure 14c) where the
behaviour is determined only by stratification N . The three-dimensional spectrum is
given by

Φ33(k, t)inv =
sin2 θ

4πk2
(1 − cos(2Nt sin θ))S(k) +

sin2 θ

8πk2
(1 + cos(2Nt sin θ))E(k)

(φ = π/2, 3π/2). (6.8)

This shows that the integrand at φ = π/2 oscillates in the θ-direction with
wavelength θ = sin−1[π/(Nt)] = sin−1[π/(Ri1/2αt)]. Thus if αt is the same, Nt is larger
for larger Ri, giving a smaller wavelength in the θ-direction. However, the contribution
to the energy of the oscillating part diminishes ∝ (Nt)−1/2 with the application of the
method of steepest descents (Hanazaki & Hunt 1996). On the other hand, the steady
part of (6.8) is independent of N (�= 0) (or Ri(�= 0)) and only this steady part
contributes to E33(k) at large times (αt 
 1 or more precisely Nt >O(1)), which is
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Figure 15. Three-dimensional radial spectra E33(k) at Nt= 20 for various Ri. The conditions

are the same as figure 13 except that α varies according to Ri= N2/α2 while N (= 20
√

2)
is fixed. - - - - - - - -, Ri= 0.088; – – – –, Ri= 0.25; ———–, Ri= 1; — - — - —, Ri= ∞ (no
shear).

given by

sin2 θ

8πk2
(E(k) + 2S(k)) (N, Ri �= 0, αt 
 1, | cosφ| � 1). (6.9)

This is the reason why different Ri or N (�= 0) gives almost the same E33(k) at high
wavenumbers. Indeed larger αt (i.e. Nt) gives better agreement for different Ri(�= 0).

When there is no stratification (N = Ri =0), Φ33(k) becomes

Φ33(k, t)inv =
sin2 θ

4πk2
E(k) (N = Ri = 0, | cosφ| � 1), (6.10)

because cos(2Nt sin θ) = 1. Then, if either E(k) > 2S(k) or equivalently KE0 > 2PE0

is satisfied, comparison of (6.10) with (6.9) shows that E33(k)(Ri > 0) <E33(k)(Ri = 0)
holds at large times (Nt > O(1)) and the vertical kinetic energy reduces. For example,
if PE0 = 0 (or S(k) = 0) as in the present case, even a weak stratification will halve the
value of E33(k), but the reduced value is independent of the strength of stratification
N (�= 0). The above explanations are not exact but explain qualitatively most of the
results obtained.

To see the effect of purely the shear α, E33(k) for the same N , ν and t (Nt = 20) is
shown in figure 15. The results for Ri = 1(N = α) are the same as figure 13. Stronger
shear (smaller Ri) gives larger E33(k) at low wavenumbers (k � 1) and smaller E33(k) at
high wavenumbers (k � 1), i.e. the shear significantly enhances the large-scale vertical
motion while inhibiting the small-scale vertical motion. When E33(k) is integrated,
smaller Ri (larger α) gives faster decay of VKE (cf. figure 6), showing that the
high-wavenumber decay overcomes the low-wavenumber increase, although the high-
wavenumber components at Ri = 0.088 < 0.25 would be underestimated in RDT as
noted in figure 2.

The time development of E33(k), (not shown here), shows that the bandwidth of
the flat spectrum, i.e. 10−0.2 � k � 101, is determined by Nt, being elongated to the
low-wavenumber region with time. This is independent of Ri (or α), showing that
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Figure 16. One-dimensional spectrum Θ33(k1) at Nt= 10 for various Ri. The conditions are
the same as figure 12, i.e. similar to the experiments by Piccirillo & Van Atta (1997) except for
the Prandtl number (Pr = 1) and that E(k0) is given by (4.9). - - - - - - - -, Ri= 0.088; – – – –,
Ri= 0.25; ———–, Ri= 1; — - — - —, Ri= ∞ (no shear).

its appearance is governed by stratification. We should note, however, that the flat
spectrum does not appear when there is no shear (Ri = ∞), showing that both the
shear and the stratification are necessary for the generation of the flat spectrum (or
the blocking effect of a rigid surface (Hunt & Carlotti 2001).

It is of interest to note that at high wavenumbers both the shear and the
stratification work to reduce E33(k) and Eρρ(k). This means that even if Ri is the same,
larger α and N reduce the high-wavenumber components. This is consistent with the
fact that the linear approximation becomes a better approximation for larger α and
N (cf. figure 1).

For comparison with the experiments we need to investigate the one-dimensional
spectra Θ33(k1). Figure 16 shows that the shear reduces the high-horizontal-
wavenumber components, i.e. the turbulent structure becomes longer in the x1-
direction consistent with the generation of the streaks. This can be explained by the
fact that for large k1, viscous effects are large, particularly at large αt as is clear in
(5.2).

The radial spectra of the potential energy given in figure 17 (αt = 20) show that
stratification generally reduces the potential energy at all scales, in contrast to E33(k)
(figure 13) which showed insensitivity to N (�= 0) at high wavenumbers. The difference
appears since the non-zero region of the integrand is not localized to φ = π/2, 3π/2 in
Eρρ(k) compared to E33(k). A nearly flat spectrum region (100 � k � 101) appears at
large times (αt = 20) which would correspond to E33(k) (figure 13). The flat spectrum
in Eρρ has been observed also in DNS by Kaltenbach et al. (1994, their figure 13b).
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Figure 17. Three-dimensional radial spectra Eρρ(k) at αt = 20 for various Ri. The conditions
are the same as figure 13. - - - - - - - -, Ri= 0.088; – – – –, Ri= 0.25; ———–, Ri=1.

Figure 18. One-dimensional spectrum Θρρ(k1) at Nt = 10 for various Ri. The conditions are

the same as figures 12 and 16 except that N = 3.35 s−1 is fixed while α is varied with Ri.
- - - - - - - -, Ri= 0.088; – – – –, Ri= 0.25; ———–, Ri= 1; — - — - —, Ri= ∞ (no shear).

The one-dimensional potential energy spectrum Θρρ(k1) at Nt= 10 given in figure 18
shows that the shear (smaller Ri) gives smaller high-wavenumber energy, which is
similar to the behaviour of Θ33(k1). We also notice that a spectrum proportional
to k−1.2 appears at 10−0.3 � k1 � 100.8 particularly at low Ri. Rohr et al. (1988, their
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Figure 19. Time development of the one-dimensional spectrum Θρρ(k1) for Ri= 0.44. The
conditions are the same as figure 12 and 16 with similarity to the experiments by Piccirillo &
Van Atta (1997). ———, αt = 4.87; – – – –, αt = 6.38; - - - - - - - -, αt = 7.54.

figure 23a) found a similar spectrum and argued that Θρρ(k1) ∝ k−1.2 observed in
thermally stratified water flow (Pr 
 1) is consistent with the fact that the viscous
subrange lies between the k−5/3 (inertial) and k−1 (viscous–convective) subrange, which
has also been observed by Gibson & Schwarz (1963). They attributed the significant
attenuation in the high-wavenumber region to the resolution of the probe. However,
in this study, similar spectra appeared even with Pr = 1 and so the same explanation
cannot be applied here, and another explanation becomes necessary. Since the power
spectra appear more clearly at low Ri (larger α), the spectrum is associated with the
shear. Similar spectra (∝ k−1.2) can be found in the LES results by Kaltenbach et al.
(1994, figure 13d) for Pr = 1. Note also that the vertical power spectrum for the vertical
kinetic energy (figure 16) shows that Θ33(k1) ∝ k−4

1 in the same wavenumber region.
The time development of Θρρ(k1) for Ri = 0.44 (4.87 � αt � 7.54) is shown in

figure 19 for comparison with the experiments by Piccirillo & Van Atta (1997).
The total potential energy PE decreases for αt � 2.5 in RDT as is expected from
figure 2, but the monotonic decay occurs only at high wavenumbers since the low-
wavenumber components oscillate with time. When the low-wavenumber components
are increasing, the peak wavenumber decreases with time in agreement with the
experiments by Piccirillo & Van Atta (1997, figure 14). Indeed when Ri =0.44, ER is
increasing for 5 � αt � 7.5 (cf. figure 4, Ri = 0.5). The integrand of B (PE) is increasing
near cos φ0 = 0 (k1 = 0), similar to figures 7(a) and 7(b). Then Θρρ(k1) increases at
low k1, while it decreases elsewhere due to the shear and the diffusion, so that PE
generally decreases with time. The main difference between RDT and the experiments
is that in RDT, high-wavenumber components decrease monotonically with time even
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Figure 20. Vertical and horizontal spectrum Θ33(k3) and Θ33(k1) at Nt = 10 (Ri= 1). The
conditions are the same as figure 12. - - - - - - - -, Θ33(k3) (and Θ33(k1)) at Nt= 0; — - — - —,
Θ33(k3) (Nt= 10); ———–,Θ33(k1) (Nt= 10).

when Ri < 0.25, and the increase of the potential energy PE is suppressed, while in
the experiments for Ri = 0.04 high-wavenumber spectra become steady so that PE
increases with time. This suggests that the absence of nonlinear interaction in RDT
means that the energy of the high-wavenumber components is underpredicted. This
leads to an underprediction of the potential energy.

To see the vertical spectrum, which is often observed in the ocean, we show Θ33(k3)
along with Θ33(k1) in figure 20. Initially, at Nt = 0, Θ33(k3) and Θ33(k1) agree because
of the initial isotropy assumed here, but as time elapses the vertical spectrum has
progressively more energy at small scales (i.e. high k3), while the horizontal spectrum
has more energy at large scales (i.e. low k1). As observed in figure 15, shear generally
reduces the high-k(= |k|) components, but the vertical spectrum behaves differently.
This can be understood by the analytical form of the vertical spectrum. If we use
the cylindrical coordinates with k1 = kH cosφ, k2 = kH sin φ and k3 = k30 −αtk1, we can
write Θ33(k3) as

Θ33(k3) =

∫ ∞

0

dkHkH

∫ 2π

0

dφΦ33(k, t)

=
1

2π

∫ ∞

0

dkH

×
∫ π

0

dφ
1

kH

|P ′
ν(z)Qν(z0) − Pν(z0)Q

′
ν(z)|

2
E

([
k2

H + (k3 + kHαt cos φ)2
]1/2)

× exp

(
−2νt

(
k2

H + k2
3 + kHk3αt cos φ +

1

3
k2

H (αt cosφ)2
))

, (6.11)
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where ν is given by (5.11), and

z = i
k3

kH

, z0 = i

(
k3

kH

+ αt cos φ

)
. (6.12)

The form of E(k0) = E([k2
H + (k3 + kHαt cos φ)2]1/2) in (6.11) shows that at large

times (αt 
 1), if k1 = kH cos φ < 0, E(k0) takes the initial value at t = 0 for larger
values of k3(
 k30), giving more energy at higher wavenumbers. In particular, at very
large vertical wavenumber k3/(αt) 
 1, components of cosφ = −1 (i.e. φ = π) become
dominant.

Since this discussion is related only to the shear and not to the stratification, the
difference between the horizontal and vertical spectrum will be the same in general
shear flow with or without stratification. The results should be similar also for other
velocity components and potential energy. Indeed, numerical RDT results for Θ11

and Θρρ also showed a similar difference. In previous RDT for unstratified shear flow
Hunt & Carruthers (1990) showed similar results for Θ11, and in a recent experiment
on the density spectra Θρρ , Keller & Van Atta (2000) also showed similar results.

7. Conclusions
In this study, we have investigated some of the main mechanisms governing

stratified turbulence with vertical shear using the linear rapid distortion theory
(RDT) for homogeneous flows developing with time. The analytical solutions of
RDT equations are found to be described by Legendre functions of complex degree
with pure-imaginary argument. The numerical evaluation of the analytical results
showed good agreement with DNS for stable mean flow (Ri � 0.25) particularly at
low turbulent Froude numbers or at high shear numbers when the nonlinear effects
are less significant. Some significant effects depend on nonlinear processes and are
clearly not modelled by RDT, particularly at very low values of Ri.

Initially, as turbulence develops, many of the characteristics are, as experiments
indicate, similar to those in unsheared flow, since at leading order the energy and the
fluxes are determined by Nt, and the effect of shear usually appear at higher order.

The countergradient density and momentum fluxes also occur with shear (Ri � 1.0),
and are described by the linear theory. However, when Ri is above a critical value
of Ricrit ∼ 0.3, these fluxes oscillate with time coherently across the whole flow. Also,
the mean values of these fluxes decrease and approach zero as Ri increases. This
structural change in the sheared turbulence appears to be the main mechanism for its
suppression by stable stratification.

The ratio ER(=PE/VKE) (for large αt 
 1, Nt 
 1) of the potential energy to the
vertical kinetic energy generally decreases with Ri(� 0.25), reaching the smallest value
of 3/2 when there is no shear (Ri = ∞), although for Ri � 0.5 the variation is less than
30%. Thus there is good agreement with the previous DNS for Ri � 0.25. But when

Ri < 0.25, the turbulent energy and ER grow with time because RDT estimates u2
3

incorrectly. Although the linear theory is inappropriate in this range (for this velocity
component and for ER), it does indicate that in a uniform shear flow the turbulence
structure undergoes a critical transformation when Ri ∼ 0.3, as the DNS results of
Gerz & Schumann have shown.

This result is reasonably robust, as we see that both the energy ratio ER and the

normalized vertical density flux ρu3/(ρ2 u2
3)

1/2 are independent of the initial value
ER0, and are also primarily determined by linear processes even with shear.
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In the radial and horizontal spectra, stratification governs the buoyancy oscillation
in the vertical plane (θ-direction) while the shear determines the localization in the
φ-direction to φ → π/2, 3π/2 (or k1 → 0) in the (θ, φ) space (cf. (2.7)) The localization
with time is mainly due to the spectral deformation given by E(k0) = E((k2

1 +k2
2 +(k3 +

αtk1)
2)1/2), where k0 is the initial radial wavenumber. This means that for the vertical

wavenumber spectrum, the main contribution for high k3 comes from the negative
value of k1/k3 and negative cos φ (φ ∼ π) (i.e. small values of k2/k1 = tan φ). The
amplitudes of these spectra grow with time. By contrast, for the radial and horizontal
components (k, k1), the high-wavenumber components decrease quite rapidly. These
spectral forms are affected more by shear than by stratification. So stratified and
unstratified shear flows should have the same high-wavenumber spectra away from
the boundaries, as indeed tends to be observed.

The effect of shear on viscous decay is not significantly affected by stratification
and is identical to that in pure shear flow, i.e. the components of larger streamwise
wavenumber k1 decay faster, leaving the components of smaller k1. In combination
with the effect of spectrum deformation, the energy and the flux are increasingly
dominated by the small-k1 components as time elapses. Since the components of
k1 = 0 are unaffected by the shear and oscillate in time with period π/N , this
explains why the energies and the fluxes oscillate at period π/N even in a shear
flow.

The contribution of long streamwise eddies (k1 = 0) explains many of the spectral
behaviours. For example, the radial spectra of the vertical kinetic energy E33(k) at
large times are almost independent of the stratification N (�= 0) at high wavenumbers,
since only the steady components contribute to E33(k). But we note that even a weak
stratification reduces E33(k) at small scales if KE0 > 2PE0 due to the decrease of
quasi-steady components. The inviscid stratification effect on the decrease of VKE is
generally more significant at large scales, in agreement with the conjectures by Hunt
et al. (1988).

The effect of stratification N and shear α at high wavenumbers (k or k1) is to reduce
both VKE and PE. Even for the same Ri, larger N and α would reduce the high-
wavenumber components of VKE and PE. This is consistent with the assumption of
linearity of the governing equations justified for large N and α. It leads to smaller
VKE and PE at small scales. On the other hand, at small k, the effects of stratification
and shear oppose each other, i.e. VKE and PE decrease due to the stratification but
increase due to the shear. Then, when the spectrum is integrated, both VKE and PE
decay faster for larger N . But the dependence on α is more complicated. The VKE
decays faster for larger α, but the dependence of PE on α is not monotonic, giving
weak dependence of ER on Ri for Ri ∼ 1

The major question arising from this paper concerns the interpretation and
application of the results to steady flows, and to flows at very high Reynolds numbers
(for a general discussion see Hunt & Carruthers 1990). The nonlinear dynamics of
turbulence eddies in fact have a finite ‘life-time’ TL ∼ LX/u3 in unstratified turbulence,
and of order α−1 in sheared turbulence (Ri � 1) (Kaltenbach et al. 1996) and N−1

in stratified turbulence (Ri � 1). When the results, e.g. for PE/VKE, have a steady
asymptote, they may be applied in steady flows. But where the gross features of
the turbulence are predicted to be unsteady (e.g. the formation of countergradient
fluxes after t � N−1), we might not expect to observe such fluxes in steady flows.
Measurements in the atmospheric boundary layer when Ri ∼ 0.25 (and Nt → ∞) do
not exhibit countergradient effects in statistically steady conditions. But they tend to
be clearly observed during unsteady intermittent events.
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Turbulent shear flows can only be steady when the mean velocity gradient is non-
uniform, because then the vorticity dynamics inhibit the ‘growth’ of large-length-scale
eddies (e.g. Hunt & Morrison 2000). However, we conclude that the mechanism for
the ‘suppression’ of turbulence is local and is likely to be dominated by changes to the
generation mechanism, independent of large-scale non-uniformities. This mechanism
is not related to the suppression of any inviscid instability, which depends on the form
of the large-scale mean velocity profile. Another reason why this local mechanism
for Ricrit is a robust concept comes from a simple Lagrangian analysis of finite-sized
spherical fluid particles oscillating in a uniform shear flow. By combining the analysis
of Pearson et al. (1983), and Auton, Hunt & Prud’homme (1988), it is found that
the increasing shear stress associated with the particles’ motion is suppressed for
Ri > Ricrit, where Ricrit ∼ 1/4.

Another unresolved problem is the Pr-dependence of the energy ratio ER and
the countergradient flux. Although the results of RDT for Pr =1 showed high-
wavenumber countergradient flux consistent with the experiments, the experiments
for stratified shear flow show the same results irrespective of Pr, while with no shear,
wind tunnel experiments (Pr = 0.7 < 1) show a low-wavenumber countergradient flux.
The energy ratio ER will also depend on Pr, as the viscosity affects VKE and PE
differently (figures 4, 5).

In the atmosphere and the ocean, anisotropic initial conditions are often more
relevant (Gargett 1988). For example, Gargett, Merryfield & Holloway (2003) used
anisotropic initial conditions to investigate the double-diffusion processes in the ocean
for relatively weak stratification (Fr > 1). The RDT solutions for initially anisotropic
stratified rotating turbulence without mean shear have been considered by Hanazaki
(2002), but similar effects on the shear flow still need to be assessed.

We finally note that a more complete applicability condition of RDT than described
in § 2 would be established by also considering the energy ratio of the vortex mode to
the wave mode, for example using the Craya–Herring frame (Godeferd & Cambon
1994). Such an estimate would be possible by calculating the initial ratio of the
vortex-mode energy to the wave-mode energy. We note that DNS with no initial
vortex energy shows very small vortex-mode energy even at large times (Métáis &
Herring 1989). However, in shear flow there is both linear and nonlinear energy
exchange between these two modes and with the potential energy. Thus we still
need to determine what proportion of the vortex-mode component is related to the
nonlinear motion in the subsequent time development.

The authors would like to thank Dr J. Iino of Tohoku University for numerical
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from the Natural Environment Research Council to the Centre for Polar Observation
and Modelling of University College London.
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